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Abstract
We give a closed-form solution of von Neumann entropy as a function of
geometric phase modulated by visibility and average distinguishability in
Hilbert spaces of two and three dimensions. We show that the same type of
dependence also exists in higher dimensions albeit with other terms. For non-
maximal mixing, the results become more involved and generally depend also
on the probability of the states. We also outline a method for measuring both
the entropy and the phase experimentally using a simple Mach–Zehnder-type
interferometer which explains physically why the two concepts are related.

PACS numbers: 03.65.Vf, 05.30.−d

1. Introduction

The von Neumann entropy [1] is a measure of mixedness in a physical state described by a
density matrix. The general rule is that the more orthogonal the states comprising the density
matrix are, the higher the value of the corresponding entropy. Looking at it from a different
perspective, the entropy signifies the lack of knowledge we have about the exact pure state the
system is in. For pure states, the knowledge is maximal and the value of entropy is zero, while
for a maximally mixed state (the normalized identity matrix), the value of entropy is highest as
any of the pure states in the mixture is equally likely. Therefore, this intuition would suggest
that distinguishability between states is the only parameter determining the value of entropy.
We also note that entropy is a static property of the system (i.e., it is only a function of the
density matrix describing the state, rendering it completely insensitive to the dynamical or
kinematical evolution). A very readable account of the general properties of entropy can be
found in Wehrl [2].

Geometric phases, on the other hand, are obtained when a physical system evolves
through a (discrete or continuous) set of states. We can say that this phase depends only on the
geometric aspects of this evolution (i.e., it is, for instance, independent of the rate of evolution,
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or more generally it is independent of the Hamiltonian that has evolved the system), but
experimentally it is generated by dynamics of either a continuous Schrödinger-type evolution
or a discrete quantum measurement (of the most general type). Due to the independence from
the Hamiltonian, the geometric phase can be studied by considering the kinematics, i.e., the
states that the system traverses. A very thorough exposition of this procedure can be found in
[3, 4]. The geometric phase was originally discovered by Berry [5] who considered a cyclic
adiabatic evolution of a pure state. Subsequently, this has been generalized to the nonadiabatic
[6], noncyclic [7] and the mixed state [8, 9] cases. The geometric phase has a long and
interesting history, and we refer the interested reader to the collection of papers compiled by
Shapere and Wilczek [10]. No detailed knowledge of this will be necessary however, as all
the relevant information will be given here.

Given that the entropy is a static property and geometric phase a kinematic property of a
quantum system, we would not at first sight expect there to be any connections between the
two. This conclusion is however incorrect and in this paper, we will show that entropy can in
fact be written as a function of geometric phase (and some other parameters in general).

We offer an explanation to the relationship between entropy and geometric phase.
Throughout the paper, we will be considering a density matrix consisting of discrete states
ρ = 1

N

∑N
i=1 |ψi〉〈ψi | where N is the number of states and |ψi〉 is the ith state in the ensemble.

The density matrix in this way appears to be a static quantity. However, we can also think
of density matrices as time averages ρ = 1

T

∑T
i=1 |ψ(i �t)〉〈ψ(i �t)| where T is the total

evolution time and |ψ(i �t)〉 is the state at time i �t . We can now think of a single state
evolving from one state to another every step �t . If we set T = N and |ψi〉 = |ψ(i �t)〉, the
above two density matrices are equivalent. Now that we have introduced a kinematical way
of looking at the density matrix, perhaps the result of expressing the von Neumann entropy
(a function of the density matrix) in terms of the geometric phase is not so unexpected.

Our work has been stimulated by Jozsa and Schlienz [11] who pointed out that von
Neumann entropy can increase even when the ensemble of quantum states become less
distinguishable (i.e., more parallel). They noted that this behaviour does not occur in a two-
dimensional Hilbert space but emerges in a three-dimensional Hilbert space. Their conclusion
is that distinguishability is a global property (considering the whole ensemble) which cannot
be reduced to considering the pairwise overlaps of the states.

In this paper, we attribute this transition to the presence of a geometric phase by giving
a closed-form solution of entropy as a function of geometric phase for the maximally mixed
case. We will begin by defining all the relevant variables. Then we will work through the
two- and three-dimensional cases. We also comment on the arbitrary dimensional case with
any number of states. We will finally discuss a method to experimentally measure entropy
and show that the same set-up is also used for measuring geometric phases. This gives a
strong reason for why the two concepts are related. Interestingly, in two dimensions, the
entropy is either a function of the phase or distinguishability, but we do not need both at the
same time (this is because the phase and distinguishability can directly be related to each
other). For higher dimensions this relationship becomes more complicated as we will show
and throughout the paper we discuss mathematical and physical reasons for this difference
between two and higher dimensional systems. We will conclude with a summary.

2. Setting the scene

As we have already said, entropy is a physical quantity that quantifies the lack of information
in a given ensemble. Suppose the ensemble contains three quantum states |ψ1〉, |ψ2〉, |ψ3〉
with probabilities p1, p2, p3, respectively, where p1 + p2 + p3 = 1. We can construct the
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density operator ρ = p1|ψ1〉〈ψ1| + p2|ψ2〉〈ψ2| + p3|ψ3〉〈ψ3| and the von Neumann entropy
as SvN = −Tr(ρ ln ρ) where the Boltzmann constant kB = 1. Together with state vectors,
we shall also be working with coherence vectors because we can generalize easily to higher
number of states than the dimension of the system. Any density operator for two dimensions
(i.e., two-level system) can be written as ρ = 1

2 (I + n · σ), where σ are the Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
(1)

n is a three-component coherence vector and · denotes the scalar product. In three dimensions
any state can be written as ρ = 1

3 (I +
√

3n · λ) where λ are the Gell–Mann matrices:

λ1 =

0 1 0

1 0 0
0 0 0


 , λ2 =


0 −i 0

i 0 0
0 0 0


 , λ3 =


1 0 0

0 −1 0
0 0 0


 ,

λ4 =

0 0 1

0 0 0
1 0 0


 , λ5 =


0 0 −i

0 0 0
i 0 0


 , λ6 =


0 0 0

0 0 1
0 1 0


 ,

λ7 =

0 0 0

0 0 −i

0 i 0


 , λ8 = 1√

3


1 0 0

0 1 0
0 0 −2


 (2)

and n is now an eight-component coherence vector. Note that our representation of the state
in terms of Pauli and Gell–Mann matrices is not unique. Any other appropriate basis will be
related to this basis through an orthogonal matrix transformation that would be three and eight-
dimensional, respectively [12]. Here, the dimension refers to the number of real parameters
needed to describe the state. For d-level systems, the density matrix is given by

ρ = 1

d

(
I +

√
d(d − 1)

2
n · λ

)
(3)

where n is the d2 − 1 element coherence vector and λ are d × d matrices satisfying
the Lie algebra of SU(d) [13]. The mixedness is introduced in the coherence vectors by
n = p1n1 + p2n2 + p3n3 where ni are the coherence vectors corresponding to the ith state.

We now introduce a quantity called the perimeter, P, defined as

P = |n1 − n2|2 + |n2 − n3|2 + |n3 − n1|2 (4)

= 2n2
1 + 2n2

2 + 2n2
3 − 2n1 · n2 − 2n2 · n3 − 2n3 · n1 (5)

= 6 − 2(n1 · n2 + n2 · n3 + n3 · n1). (6)

This quantity tells us how different the three states are on average. The larger the perimeter,
the more orthogonal the states become. Note that this quantity is related to the sum of the
overlaps of the quantum states (for example in three dimensions):

Q = |〈ψ1|ψ2〉|2 + |〈ψ2|ψ3〉|2 + |〈ψ3|ψ1〉|2 (7)

= Tr(ρ1ρ2) + Tr(ρ2ρ3) + Tr(ρ3ρ1) (8)

= 1
3 (1 + 2n1 · n2) + 1

3 (1 + 2n2 · n3) + 1
3 (1 + 2n3 · n1) (9)

= 1 +
6 − P

3
. (10)
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n1
n3

n2

Figure 1. Coherence vector space with three general states. The dashed lines denote the perimeter.
Note that in two dimensions, the ball itself is a Bloch sphere and every point corresponds to a
physical state. But for higher dimensions, the coherence vector space is a proper subset of the ball
[12].

n1
n3

n2n4

Figure 2. Coherence vector space with four states. The dashed lines again denote the perimeter.

The negative sign makes sense because the more/less parallel the states are, the smaller/larger
the perimeter. If the states are identical, P = 0 (since ni · ni = 1) and if they are orthogonal,
P = 9 (since ni · nj = −1/(d − 1) for i �= j where d is the dimension of the system). Note
that this is for the three-dimensional case. With three states, we can visualize the perimeter as
the square distances of each side of a triangle with each vertex representing a quantum state
(see figure 1). As soon as we consider more states, the usual meaning of perimeter breaks
down because we must include more than two distances for each state. For example with four
states, we will have the square distances of each side of a four-sided polygon as well as the two
lines adjoining opposite vertices (see figure 2). Hence, the term ‘average distinguishability’
may be more appropriate than perimeter but we will continue to use the latter throughout the
paper. We would now expect, as mentioned earlier in the introduction, that the larger the
perimeter, the more distinguishable (orthogonal) the states comprising the mixture, and
the higher the value of the entropy. This is, as will be shown in more detail soon, true
for qubits, but fails in higher dimensions in general.
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Figure 3. In accord with the order of the labels on the Y-axis, the bottom line shows the
von Neumann entropy, the one above shows Q, then Q′, P ′ and the top line shows P. P ′ and Q′
are without the squares in equations (4) and (7), respectively. Note that just less than φ1 = π, SvN
decreases as P ′ increases. Also around φ1 = 0 and φ1 = 2π, SvN decreases as Q′ decreases and
SvN increases as Q′ increases, respectively. Therefore, P ′ and Q′ are counterintuitive whereas P
and Q show what we expect.

Before we go into the main topic of the paper, we point out another important issue.
Namely, changing the definition of the perimeter and Q by removing the squares in
equations (4) and (7), respectively, changes the behaviour of the perimeter with respect to
the entropy. In particular, we can now observe an increase in entropy by decreasing the
perimeter (or equivalently increasing the overlap) for the two-dimensional ensemble contrary
to [11]. Let us consider the following states:

|ψ1〉 = cos(θ1/2)|0〉 + exp(−iφ1) sin(θ1/2)|1〉 (11)

|ψ2〉 = cos(θ2/2)|0〉 + exp(−iφ2) sin(θ2/2)|1〉 (12)

|ψ3〉 = cos(θ3/2)|0〉 + exp(−iφ3) sin(θ3/2)|1〉 (13)

or equivalently the following coherence vectors:

n1 = [sin(θ1) cos(φ1), sin(θ1) sin(φ1), cos(θ1)] (14)

n2 = [sin(θ2) cos(φ2), sin(θ2) sin(φ2), cos(θ2)] (15)

n3 = [sin(θ3) cos(φ3), sin(θ3) sin(φ3), cos(θ3)]. (16)

Let us fix θi = π/2, φ2 = 2π/3, φ3 = 4π/3 and vary φ1 from 0 → 2π . In the Bloch
sphere picture, the states lie on the equator with each state initially equally spaced. ψ1 or n1

rotates around once remaining on the equatorial plane while keeping the other two states fixed.
Figure 3 shows the anomaly. Since this behaviour is counterintuitive, we will hereafter
continue to use the original definitions of P and Q because they avoid the above anomaly
and allow a simple relationship between the perimeter and the total overlap. So, in summary,
we now have that the larger the perimeter (or equivalently the smaller the Q), the larger the
von Neumann entropy keeping all other variables constant.
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The geometric phase is a phase that is observed when a state evolves in parameter space
(e.g., the parameter could be a magnetic field strength) [5]. A more amenable interpretation
for our present purposes is the quantum version of the Pancharatnam relative phase [14]. See
[15] for a concise modern introduction. We can think of the trajectory to be specified by a
series of projection measurements. For example, if we begin with the state |ψ1〉, we can project
with |ψ2〉〈ψ2|, |ψ3〉〈ψ3| and back to |ψ1〉〈ψ1|. Note that the state does not follow any specific
trajectory between the three states; we simply have a projective measurement collapsing one
state to the subsequent one. However, there is an experimental interpretation of our mixed
state geometric phase given in section 4. We can then calculate the geometric phase γijk for
arbitrary states by

γijk = arg{Tr(|ψi〉〈ψi |ψj 〉〈ψj |ψk〉〈ψk|)}. (17)

It is clear from the above that the states have to be non-orthogonal for this construction to be
finite (non-zero) in the first place. Otherwise, no geometric phase is observable. For three
states in two dimensions, we get

tan γ123 = n1 × n2 · n3

1 + n1 · n2 + n2 · n3 + n3 · n1
(18)

where n1 × n2 is the ordinary cross product. For three states in three dimensions, we get [16]

tan γ123 = 2
√

3n1 · n2 ∧ n3

(n1 + n2 + n3)2 + 2n1 · n2 
 n3 − 2
(19)

where n1 · n2 ∧ n3 = n1ifijkn2j n3k and n1 · n2 
 n3 = √
3n1idijkn2j n3k . i, j, k refer to the

components of the vectors, fijk are the antisymmetric SU(3) structure constants and dijk are the
symmetric tensors. Note that γ123 refers to the phase taking three states of any dimensionality.
Exact definitions and other useful formulae are given in [16, 17] but for convenience, we state
them here:

[λi, λj ] = 2ifijkλk (20)

{λi, λj } = 4
3δij + 2dijkλk (21)

f123 = 1, f458 = f678 =
√

3
2 , f147 = f246 = f257 = f345 = f516 = f637 = 1

2 (22)

d118 = d228 = d338 = −d888 = 1√
3
, d448 = d558 = d668 = d778 = − 1

2
√

3
(23)

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 = 1
2 . (24)

Other useful formulae are

λiλj = 2
3δij + (dijk + ifijk)λk (25)

Tr λi = 0, Tr(λiλj ) = 2δij . (26)

The visibility is defined by

Vijk = |Tr(|ψi〉〈ψi |ψj 〉〈ψj |ψk〉〈ψk|)| (27)

where the name originates from V corresponding to how visible or how large the amplitude
is in an interferometer [18, 19]. Note that V cos γ is equal to the denominator of tan γ

given in equations (18) and (19) for two and three dimensions, respectively. Observe also
that Vijk cos γijk is the real part of the Bargmann invariant 〈ψi |ψj 〉〈ψj |ψk〉〈ψk|ψi〉 [20, 21].
Bargmann introduced this quantity to distinguish between linear and anti-linear mappings, and
employed it in a proof of Wigner’s theorem: a symmetry operation on a quantum system is
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induced by a unitary or an anti-unitary transformation (discrete evolutions allow anti-unitary
transformations). So, we could use the Bargmann invariant instead of the geometric phase
in our work; however, we will continue using the latter since it is much more familiar to
physicists. An interesting avenue for further work will be to explore the further relevance of
Bargmann invariants [3] in the following results.

3. Results

In this section we obtain the following results. We first show that in two dimensions, the
entropy depends on either the perimeter or the product of the visibility and the cosine of the
geometric phase but not both together. We next show that for three states in three dimensions,
we need both quantities. The same is shown to be true for three states in any dimension as
expected. Then we show that for many states in three dimensions, the entropy depends now
on the perimeter and all the possible combinations of the product of the visibility and the
cosine of the geometric phase for every triplet of states. In the last subsection, we generalize
to any dimensions and any number of states by using a closed-form solution of the entropy
obtained by Chumakov et al [22]. Note that for general mixtures of pure states (i.e., unequal
probabilities), we must redefine the perimeter and geometric phase in two dimensions, and
we can no longer express the entropy with just the perimeter, visibility and the cosine of the
geometric phase in higher dimensions even after redefinitions.

3.1. Any number of states in two dimensions

As is shown in [11], entropy cannot be increased by increasing the average overlap of the
ensemble in two dimensions for any number of states. We will show this by giving an explicit
formula of von Neumann entropy as a function of perimeter. We can also rewrite it as a
function of geometric phase (modulated by the visibility) but the three quantities will not
appear together in the function. We must first find the eigenvalues x± of the density operator
which will give SvN = −x+ ln x+ −x− ln x−. Introduce n = 1

t
(n1 +n2 + · · ·+nt ) = (n1, n2, n3)

where ni = 1
t
(n1i + n2i + n3i + · · · + nti). The first subscript refers to the state, the

second subscript refers to the vector component and t denotes the number of states.
The eigenvalues are x± = (

1 ±√
n2

1+n2
2+n2

3

)/
2. Note that n2

1 + n2
2 + n2

3 = n · n. Since
n · n = (t + 2n1 · n2 + 2n2 · n3 + 2n3 · n1 + · · · + 2nt−1 · nt )/t2 and generalizing the definition
of P above to t states (6 becomes t (t − 1)), n · n = (t2 − P)/t2. This gives

SvN = −
1 +

√
t2−P

t2

2
ln

1 +
√

t2−P
t2

2
−

1 −
√

t2−P
t2

2
ln

1 −
√

t2−P
t2

2
. (28)

Figure 4 plots this. We see that the von Neumann entropy is a monotonically increasing
function of perimeter. Using equation (18), we can also write P = 8−2V123 cos γ123 for t = 3
where V123 cos γ123 = 1+ n1 · n2 + n2 · n3 + n3 · n1. We find that in two dimensions, increasing
the geometric phase corresponds to an increase in entropy (negative values of cos γ become
unphysical since at most P = 9 and this corresponds to all three states being orthogonal which
is not possible in two dimensions). Likewise, decreasing V corresponds to an increase in P and
hence entropy. For larger number of states, we cannot generally define the perimeter solely
as a function of Vijk cos γijk , i.e., there will be Bloch vector combinations left over. However,
we will indicate in the last subsection that expressing the entropy with the geometric phase
for more than three states is possible. It is the Bloch vector picture that makes the explicit
calculation unwieldy.
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Figure 4. von Neumann entropy versus perimeter in two dimensions for t = 3.

The above calculations were for equal probabilities (p = 1/t). If we consider instead
unequal probabilities pi , we must redefine the perimeter:

P̃ = |p1n1 − p2n2|2 + |p2n2 − p3n3|2 + |p3n3 − p1n1|2 + · · · + |ptnt − pt−1nt−1|2 (29)

and then we obtain

n · n = t

t∑
j=1

p2
j − P̃ (30)

and therefore entropy is still a function of the perimeter albeit with the probabilities. We
can see that this reduces to the equal probability result above. For pure states (pi = 1) the
perimeter is zero and n · n = 1 thus SvN = 0, as it should be.

Note that in the case of unequal probabilities, there is no straightforward method of relating
the perimeter to the geometric phase unless we redefine the geometric phase by incorporating
the unequal probabilities. We can, for example, consider three states with ρi = 1

2 (1 +pini · σ)

where i corresponds to the ith state. On the Bloch sphere this state points in the same direction
as the original pure state, but it is shortened by pi . This yields

V123 cos γ123 = 1 + p1p2n1 · n2 + p2p3n2 · n3 + p1p3n1 · n3 (31)

which can be related to P̃ for t = 3. Once this is done, of course, we can no longer speak
about the state evolving into each other by projective measurement since they are no longer
pure.

We should comment that the geometric phase is dependent on the decomposition of the
density matrix whereas the von Neumann entropy is independent of the decomposition. This
means that we cannot express the von Neumann entropy in terms of the geometric phase for
all the decompositions of a given density matrix. A simple example is the following. A three
state decomposition of a density matrix yields an entropy expressed in terms of the geometric
phase but if the decomposition of the same density matrix contains only two states, it is not
possible (we need at least three states to express the von Neumann entropy as a function of
geometric phase).
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3.2. Three states in three dimensions

Similar steps are taken as the previous subsection. First, we introduce the coherence vector
n = (n1, n2, n3, n4, n5, n6, n7, n8) = 1

3 (n1 + n2 + n3) with equal probabilities. The perimeter
is given by n · n = 1

9 (9 − P). Our density matrix is now a 3 × 3 matrix, and in order to
compute its entropy we need to be able to find the eigenvalues first. This leads to solving the
following cubic equation:

x3 + Ax2 + Bx + C = 0 (32)

where

A = −1 (33)

B = 1 − n · n
3

(34)

C = n · n
9

− 1

27
− 2

27
V123 cos γ123 (35)

with V123 cos γ123 = (n1 + n2 + n3)
2 + 2n1 · n2 
 n3 − 2. The solution is given by [23, 24]

x1 = 2
√−T cos

θ

3
− A

3

x2 = 2
√−T cos

θ + 2π

3
− A

3
(36)

x3 = 2
√−T cos

θ + 4π

3
− A

3
where

R = 9AB − 27C − 2A3

54
= V123 cos γ123

27
(37)

T = 3B − A2

9
= −n · n

9
(38)

θ = arccos
R√−T 3

= arccos
V123 cos γ123

(n · n)3/2
. (39)

The von Neumann entropy is

SvN = −x1 ln x1 − x2 ln x2 − x3 ln x3. (40)

Let us look at a couple of examples. The first example uses the three states given in [16]:

|ψ1〉 = |2〉 (41)

|ψ2〉 = sin ξ |1〉 + cos ξ |2〉 (42)

|ψ3〉 = sin η cos ζ |0〉 + eiχ sin η sin ζ |1〉 + cos η|2〉 (43)

where 0 � ξ, η, ζ � π/2 and 0 � χ < 2π . By setting ξ = π/2, χ = 0 and η = π/2, we
can set the geometric phase γ and visibility V to vanish. Then by varying ζ , we can observe
the dependence of von Neumann entropy SvN on perimeter P between 6 � P � 9 as is shown
in figure 5. As is the case in two dimensions (figure 4), SvN increases monotonically when P
increases. Note that SvN is bounded by the maximum entropy allowable in a d-dimensional
system Smax = ln d. In fact the monotonically increasing property can be explicitly checked
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Figure 5. von Neumann entropy versus perimeter in three dimensions. We see entropy
monotonically increasing when perimeter is increased as is the case in two dimensions.

by differentiating equation (40) with respect to P and realizing the result to be positive for the
above range of P. In order to inspect smaller values of P, we must also vary V or γ . Note that
finding three states to vary in order to change the geometric phase alone is nontrivial. The
next example does exactly that.

We choose the three states given in [11]:

|ψ1〉 = |0〉 (44)

|ψ2〉 = 1√
2
|0〉 +

1√
2
|1〉 (45)

|ψ3〉 = 1√
3
|0〉 +

2 eiγ − 1√
3

|1〉 +

√
4

3
cos γ − 1|2〉 (46)

where γ is the geometric phase which is bounded here by γmax = 0.72 radians. These three
states keep V and P fixed so that we can inspect how SvN depends on γ alone. By calculating
the perimeter, geometric phase and visibility and using equation (40), we obtain figure 6 which
is identical to the graph given in [11].

In contrast to the two-dimensional case where we can only increase/decrease the entropy
as we increase/decrease the geometric phase, we also have that the entropy decreases/increases
as the geometric phase increases/decreases. Although this is only one particular example, it
is counterintuitive. We can deform the states slightly so as to increase the sum of overlaps Q
(or decrease the perimeter P), hence decrease the distinguishability. This should decrease the
entropy but we can now compensate by decreasing the geometric phase sufficiently to provide
an overall increase in entropy [11].

Why should there be a transition between the two- to the three-dimensional case?
Mathematically speaking, the distinctions are that the symmetric tensor does not exist in two
dimensions and the homomorphism between SU(2) and SO(3) does not exist between SU(3)

and SO(8). This means that in the eight-dimensional ball, there are patches corresponding to
unphysical states and therefore our intuition of what the phase is geometrically as well as how
the perimeter changes is lost. Alternatively, one could perhaps think in terms of the degree
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Figure 6. von Neumann entropy versus geometric phase in three dimensions. We clearly see that
as the geometric phase is increased, von Neumann entropy decreases in contrast to the opposite
behaviour found in two dimensions. The result shows for equal probabilities of states but the
monotonically decreasing behaviour can also be found with unequal probabilities.

of freedom required to find the eigenvalues of the density matrix. In two dimensions, there is
a single degree of freedom which is why we only need either the perimeter or the geometric
phase. In three dimensions, we have two degrees of freedom which are the perimeter and the
geometric phase. A precise formulation of this remark is left for future research.

3.3. Three states in any dimensions

We can increase the number of dimensions arbitrarily by considering three general states
|α〉, |β〉 and |δ〉. We can construct the density operator with equal probabilities, ρ =
1
3 (|α〉〈α| + |β〉〈β| + |δ〉〈δ|). As the above states are not orthogonal, we use the Gram–Schmidt
procedure to obtain the following orthogonal states:

|v1〉 = |α〉
‖|α〉‖ = |α〉 (47)

|v2〉 = |β〉 − 〈v1|β〉|v1〉
‖|β〉 − 〈v1|β〉|v1〉‖ = |β〉 − 〈v1|β〉|v1〉√

1 − |〈α|β〉|2
(48)

|v3〉 = |δ〉 − 〈v2|δ〉|v2〉 − 〈v1|δ〉|v1〉
‖|δ〉 − 〈v2|δ〉|v2〉 − 〈v1|δ〉|v1〉‖ = |δ〉 − 〈v2|δ〉|v2〉 − 〈v1|δ〉|v1〉√

1 − |〈v2|δ〉|2 − |〈α|δ〉|2
. (49)

We can invert these and substitute into the density operator. By noting that Q =
|〈α|β〉|2 + |〈β|δ〉|2 + |〈δ|α〉|2 (used instead of perimeter) and V cos γ = 	{〈α|δ〉〈δ|β〉〈β|α〉}
we find that

A = −1 (50)

B = 3 − Q

9
(51)

C = −1 + Q − 2V123 cos γ123

27
(52)
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which give

R = V123 cos γ123

27
(53)

T = − Q

27
(54)

θ = arccos

√
27V123 cos γ123

Q3/2
. (55)

By noting that n · n = 1 − P/9 and Q = (9 − P)/3 gives n · n = Q/3, we find that these
equations are identical to the equivalent ones appearing in the previous subsection. This is
not surprising because three states in arbitrary dimensions can be represented by a rank three
matrix. The important point to observe is that we do not require any other quantity to define
entropy. We still only require the total overlap (or perimeter), geometric phase and visibility.

For unequal probabilities, we do not get a simple generalization as in the two-dimensional
case. We have explicitly

A = −1 (56)

B = p1p2 + p2p3 + p1p3 − p1p2|〈α|β〉|2 − p2p3|〈β|δ〉|2 − p1p3|〈α|δ〉|2 (57)

C = p1p2p3(−1 + Q − 2V123 cos γ123). (58)

Observe that as well as Q and V123 cos γ123, we also have individual overlaps in B which
cannot be written in terms of Q,V123 or γ123. They reduce to the equal probabilities case and
for a pure state, B = C = 0 therefore when substituting into equation (36), we obtain the
desired SvN = 0. It is interesting to note that now R (equation (37)) contains the overlap as
well as the visibility and geometric phase, hence altering the above form of entropy. Since the
probabilities directly influence how mixed the ensemble is, it is not surprising that the form of
the entropy should change.

3.4. Any number of states in three dimensions

We have so far looked at only three states in effectively three dimensions. We will now consider
the three-dimensional case with N number of states. We now have n = (n1, n2, . . . , n8) =
1
N

(n1 + n2 + · · · + nN−1 + nN). The perimeter can be written in a compact form as

P = N(N − 1) − 2
N∑

i>j=1

ni · nj . (59)

Note that this is also true for any dimensions. Another useful formula is

n · n = 1

N2


N + 2

N∑
i>j=1

ni · nj


 (60)

also true for any dimensions. We know that the cubic coefficients A and B remain the same as
before. C is the only one that needs to be modified. We find that

C = n · n
9

− 1

27
− 2

N3

N∑
i>j>k=1

Vijk cos γijk

+
2

9N3

(
N !

(N − 3)!3!
+ (N − 3)(N(N − 1) − P) − N

3

)
. (61)
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Note that when N = 3, this reduces to the aforementioned three-state case. It is interesting to
note that the geometric phase term still contains only three states albeit with all the possible
combinations of three states. This is perhaps contrary to what we might expect from the
explanation offered in the introduction which suggests that all the states should exist in a
single geometric phase. However, we will show in the next subsection that it is possible to
express the entropy in terms of the geometric phase with more than three states.

3.5. Any number of states in any dimension

We know that the von Neumann entropy can be expanded in a power series SvN = ∑∞
i=1 ci Tr ρi

where ci are the expansion coefficients. The exact values of the cis are not relevant for our
discussion. Keyl and Werner [25] have shown that in order to calculate the eigenvalues of
a d-dimensional density matrix, it is necessary and sufficient to obtain all the traces of the
powers of the density matrix up to the dth power. Tr ρ2 contains the perimeter and Tr ρ3

contains the geometric phase with three states as is shown in the next section as well as
below. With a d-dimensional system, the entropy will contain geometric phase terms up to
d states. Obtaining a closed-form solution of the entropy for higher than four dimensions is
difficult because there is no equation using only radicals to solve the quintic or higher equation.
However, Chumakov et al [22] have a closed-form solution for arbitrary dimensional systems
which requires traces of powers of the density matrices up to d − 1 (note that this is one less
trace than in [25], achieved by using the determinant and other combinations of the elements
of the density matrix). Using their result, it is possible to give a closed-form solution of the
von Neumann entropy in terms of the geometric phase but we will only show that for higher
dimensions, there still exist geometric phase terms.

These traces contain the sum of overlaps Q (or equivalently perimeter) and all
combinations of the product of visibility and the cosine of the geometric phase up to d
states, e.g., Vab...d cos γab...d . Below, we give explicitly the form of the traces up to fourth
dimension of a density matrix ρ = 1

N

∑N
i=1 ρi with equal mixture of N states.

Tr(ρ2) = 1

N2
(N + 2Q) (62)

Tr(ρ3) = 1

N3


N + 6Q + 6

N∑
i<j<k

Vijk cos γijk


 (63)

Tr(ρ4) = 1

N4


N + 6Q +

N∑
i �=j

Tr(ρiρjρiρj ) + 2
N∑

i �=j �=k

Tr(ρiρjρkρj )

+ 24
N∑

i<j<k

Vijk cos γijk + 8
N∑

i<j �=k �=l

Vijkl cos γijkl


 . (64)

We can observe again that for two dimensions, the entropy can be expressed in terms of Q
and for three dimensions, it can be written in terms of Q and Vijk cos γijk . However, in four
dimensions, although there are terms of Q and the geometric phase, there are also terms that
involve powers of overlaps and products of different overlaps. So we conclude that even for
higher dimensional systems, the entropy can be expressed as a function of perimeter and the
product of visibility and the cosine of the geometric phases, although other terms involving
overlaps become relevant. We expect similar expressions for traces of higher powers of the
density matrix.
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We would like to briefly mention how we can incorporate geometric phases of more than
three states in the three-dimensional case with the density matrix decomposition containing
more than three states (the same reasoning applies to the two-dimensional case). We only
encountered three states in the geometric phase because we effectively only went up to Tr ρ3.
Together with Tr ρ2 and Tr ρ, we are able to find the three eigenvalues (e1, e2 and e3) of the
density matrix. Namely, e1 + e2 + e3 = 1, e2

1 + e2
2 + e2

3 = Tr ρ2 and e3
1 + e3

2 + e3
3 = Tr ρ3. Instead

of Tr ρ3, we could use Tr ρ4 = e4
1 + e4

2 + e4
3 to find all three eigenvalues. This will yield a

geometric phase with more than three states as can be seen from equation (64). Similarly, we
could use instead Tr ρk where k is an integer greater than four. This should incorporate into
the von Neumann entropy, geometric phase terms involving k states.

4. Experimental measurements of entropy, perimeter and phase

We use the simple quantum network based on the controlled-swap gate presented in [18]
which extracts properties of quantum states bypassing the need for quantum tomography.
Physically, the network is a representation of the Mach–Zehnder interferometer [26]. This
set-up was introduced to define the mixed state geometric phase. We show below that the same
set-up can be used to calculate the von Neumann entropy, hence we relate the entropy and
geometric phase experimentally. This is more evidence that the relationship between entropy
and geometric phase is not unexpected.

Since we have shown the von Neumann entropy as a function of perimeter (overlap),
geometric phase and visibility, we can experimentally measure this entropy by calculating
Tr(ρ2) for the perimeter and Tr(ρ3) for the visibility and geometric phase where ρ =
1
3 (ρ1 + ρ2 + ρ3) with equal probabilities for three states in three dimensions. However, we
can generalize this experimental procedure for any dimensions and any number of states by
calculating the traces of up to the dth power of the density matrix ρ = 1

N

∑N
i=1 ρi where N is the

number of states. Consider a set-up with two separable subsystems ρ ⊗ ρ and three separable
subsystems ρ ⊗ ρ ⊗ ρ. We now introduce the swap operator W,W |a〉 ⊗ |b〉 = |b〉 ⊗ |a〉 and
the shift operator F, F |a〉⊗ |b〉⊗ |c〉 = |c〉⊗ |a〉⊗ |b〉 for any pure states |a〉, |b〉 and |c〉. The
experimental procedure which will be described shortly measures Tr W(ρ ⊗ρ) = Tr(ρ2) [18]
and similarly Tr F(ρ ⊗ ρ ⊗ ρ) = Tr(ρ3). This can be readily generalized to the dth power of
ρ using the general shift operator S where S|a〉 ⊗ · · · ⊗ |c〉 ⊗ |d〉 = |d〉 ⊗ |a〉 · · · ⊗ |c〉 so that
Tr S(ρ⊗d) = Tr(ρd). We find on expansion:

Tr ρ2 = 1
9 (3 + 2 Tr ρ1ρ2 + 2 Tr ρ2ρ3 + 2 Tr ρ1ρ3) = 1

9 (3 + 2Q) (65)

Tr ρ3 = 1
27 (3 + 6 Tr ρ1ρ2 + 6 Tr ρ2ρ3 + 6 Tr ρ1ρ3 + 3 Tr ρ1ρ2ρ3 + 3 Tr ρ1ρ3ρ2)

= 1
27 (3 + 6Q + 6V123 cos γ123). (66)

The last line follows from Tr ρ1ρ2ρ3 = V123 eiγ123 and Tr ρ1ρ3ρ2 = V123 e−iγ123 . Hence, on
obtaining Q and V123 cos γ123, we can calculate SvN for three states in three dimensions. In
principle, we can also expand Tr ρd to show that it contains Q and all the combinations of the
product of visibility and the cosine of the geometric phase. Figure 7 shows the experimental
set-up that may be used to measure the von Neumann entropy (the diagram shows the case
for two inputs of ρ but for a rank d density matrix, we must inspect up to d inputs of ρ). We
will briefly describe how it calculates Tr ρ2, and then Tr ρd is a straightforward extension.
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H φ H M0

ρ
ρ W

Figure 7. Experimental set-up to ascertain Tr ρ2. We must exchange the swap operator W with a
shift operator S and input d ρs to obtain Tr ρd .

We begin with the initial state ρin = |0〉〈0| ⊗ ρ ⊗ ρ. We apply the first Hadamard gate
H = 1

2

( 1
1

1
−1

)
:

ρH = (H ⊗ I ⊗ I)(|0〉〈0| ⊗ ρ ⊗ ρ)(H † ⊗ I ⊗ I) (67)

= 1

2

(
1 1
1 1

)
⊗ ρ ⊗ ρ. (68)

Then we apply the phase shift � = ( eiφ

0
0
1

)
to get ρ� = 1

2

( 1
eiφ

e−iφ

1

) ⊗ ρ ⊗ ρ. Next is the
controlled-swap operation:

Ucs =
(

1 0
0 0

)
⊗ I ⊗ I +

(
0 0
0 1

)
⊗ W (69)

and finally another Hadamard to obtain

ρout = 1

4

[ (
1 1
1 1

)
⊗ ρ ⊗ ρ +

(
1 −1

−1 1

)
⊗ W(ρ ⊗ ρ)W †

+ eiφ

(
1 −1
1 −1

)
⊗ (ρ ⊗ ρ)W † + e−iφ

(
1 1

−1 −1

)
⊗ W(ρ ⊗ ρ)

]
. (70)

Since measuring the intensity I is proportional to the probability, we can measure in the
computational basis |0〉 to get

I ∝ Tr[|0〉〈0| ⊗ I ⊗ Iρout]

∝ Tr ρ Tr ρ + Tr(Wρ ⊗ ρW †) + eiφ Tr(ρ ⊗ ρW †) + e−iφ Tr(Wρ ⊗ ρ)

= 1 + 1 + eiφ[Tr Wρ ⊗ ρ]∗ + e−iφ Tr Wρ ⊗ ρ (71)

= 2 + eiφ|Tr ρ2| e−i arg Tr ρ2
+ e−iφ |Tr ρ2| ei arg Tr ρ2

(72)

= 2 + 2|Tr ρ2| cos[φ − arg Tr ρ2]. (73)

We are able to adjust the phase φ so as to obtain the largest intensity yielding |Tr ρ2| and
φ = arg Tr ρ2. Then, we acquire Tr ρ2 = |Tr ρ2| ei arg Tr ρ2

. Note that Tr ρ2 is real but higher
powers of ρ are generally not. We also obtain Tr ρ3 following similar steps. We can obtain
the von Neumann entropy via (65) and (66) for three dimensions. Naturally, we can calculate
the von Neumann entropy for d-dimensional systems by calculating the trace of the powers
of ρ up to d − 1 and utilizing the formula given in [22]. So we see that the set-up in figure 7
allows us to measure both the entropy and the product of the visibility and the cosine of the
geometric phase.
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5. Summary

We have explicitly shown the dependence of entropy on the perimeter, geometric phase and
the visibility. For an arbitrary number of states in the two-dimensional case, entropy is solely
a function of perimeter whereas for three states in three dimensions and more states in higher
dimensions, entropy is no longer just a function of perimeter but also of geometric phase
and visibility. Finally, we have shown a possible way to obtain the von Neumann entropy
experimentally. The same experimental interferometric set-up can also be used to measure
the visibility and geometric phase associated with a set of pure states. This clarifies why
physically the two seemingly unrelated concepts of entropy and geometric phase should in
fact be related to each other.
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